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a b s t r a c t

A Kalman filter is developed from a model which characterizes the float service life of a battery into two
phases. Once the latter phase of the float service life, that time when the capacity begins to decrease
rapidly, has been detected the Kalman filter is started. Outputs of the filter are a smoothed version of
the battery capacity and the projected capacity at specified time intervals in the future. It is this project
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ahead step that is used to estimate the remaining float service life of the battery.
© 2009 Eaton Powerware Corporation. Published by Elsevier B.V. All rights reserved.
loat service life
alman filter

. Introduction

The float service life of a battery can be divided into two dis-
inct periods as is depicted in Fig. 1. The first period is that time
uring which the loss of capacity is small. This can be thought of
s a threshold or guarantee time. The second is characterized by
much more rapid decrease of capacity over time and continues
ntil there is no useable capacity remaining. The length of the first
eriod is determined by several factors, one of which is the dis-
harge rate used in the test or application. The lower the discharge
ate the longer will be the time of this portion of float service life.
he duration of the second period is governed more by the battery
esign and the particular mechanism controlling life.

In most float service applications, such as a UPS, an important
eature of battery management is the ability to estimate the time
emaining for the battery to reach end of life. One method, devel-
ped for this task, is to use the project ahead step in a Kalman
lter loop to estimate the remaining life of the battery. With a suit-
ble model of the capacity degradation process during the second
eriod of float service life, it is possible, after each measurement of
apacity, to estimate the capacity at a specified point in the future.
The use of a Kalman filter for state-of-charge (SOC) applications
as been described in several published papers in recent years.
hief among these is the series by Plett [1–3] and Vasebi et al. [4].
he models assumed, to which the Kalman filter is applied, are for

∗ Tel.: +1 919 431 6454.
E-mail address: webblburgess@eaton.com.

378-7753/$ – see front matter © 2009 Eaton Powerware Corporation. Published by Elsev
oi:10.1016/j.jpowsour.2008.12.123
the most part based on known physical principles or properties
of a particular battery chemistry. In some cases electrical circuit
analogues of the electrochemical charge/discharge processes are
developed for the battery chemistry of interest.

In contrast to the approaches summarized above the track taken
in this work is based on observed behavior of the degradation of
capacity of a VRLA battery in float service operation. A probability
distribution is identified that matches this observed behavior. This
distribution is recast as a system of linear differential equations
from which the Kalman filter is obtained.

The sections following will describe the model to be used,
the formulation of the Kalman filter from this model and results
obtained applying this method to actual float service life data.

2. Capacity degradation model

In a float service life application, as a battery ages, two mecha-
nisms govern the rate of degradation of capacity, grid corrosion and
loss of electrolyte. It is important to develop an understanding of
the process by which physical measurements, in this case the pairs
(capacity, time in float service), can be incorporated into a proba-
bilistic setting. The benefit is, it allows the methods of probability
and statistics to be used to explore the data and perform analyses
to determine whether a relationship exists between the measure-

ments. Furthermore, it may be possible to identify the underlying
distribution which might adequately describe the relationship.

Imagine now taking a sample, of some size, of a particular man-
ufacturer’s battery and placing them into the same float service
application. At some interval, not necessarily periodic, the batter-

ier B.V. All rights reserved.
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Fig. 1. Relative capacity vs. time of VRLA battery.

es are discharged using a prescribed set of conditions (load and end
oltage). The capacity (or discharge time) is measured and recorded
ogether with the operating time of the battery. This is repeated
ntil the capacity of each battery has diminished to a point where
hey are no longer useful. At the end of this exercise one will have a
ollection of battery capacities and operating times for each battery.

One possible use of the data is to make some estimate of the
ength of the float service life of this battery model. That is, how
ong will the battery operate before its capacity decreases to some
pecified value, generally given as a percentage of the rated or initial
apacity. The first step in this process is to normalize the capacity (or
ischarge time) measurements. The method used here is to divide
very capacity measurement, from each battery in the sample by a
eference value, chosen generally from prior test data, to be slightly
arger than the largest capacity in the sample. The result will be a
ollection of relative capacities, �, where 0 < � < 1.

Consider now any of the particular points in time at which the
ample of batteries is discharged. There will be a range of (relative)
apacities measured that correspond to the time on test when the
ischarges were conducted. It is helpful to think of these different
apacities as being due to different ages of the battery. A battery
ith a relative capacity of 0.83 has not aged as much as another in

he sample with a relative capacity of 0.79. In other words the rates
f aging are different for these two batteries since they have both
een on float for the same amount of time. Hence one would expect
he float service life of the first battery to be longer than that of the
econd. Continuing along this line of reasoning allows the age of
he battery to be treated as a random variable.

Now it is possible to formulate the relative capacity and time on
est in a probabilistic statement:

i = Pr{L ≤ Li} = 1 − Pr{L > Li}. (1)

he relative capacity equals the probability that the age of the bat-
ery, L, is less than or equal to the accumulated time on float at the
th discharge, Li. The expression Pr{L ≤ Li} is the cumulative distri-
ution function. The remaining work is to find a distribution whose
roperties match those of the data collected. In [5] the extreme
alue distribution was found to adequately represent the capacity
egradation process. It is of the form:

−1(�) = a1(L − L0) + a0. (2)

ere

(i) L0 is the length of the first period of the float service life;
(ii) L is the age of the battery; L − L0 ≥ 0;
iii) parameters a1 and a0 are estimated from the data;

(iv) F−1(�) is the inverse distribution function, F−1(�) =
ln[−ln(1 − �)].
The model in (2) defines a random process. To design the Kalman
lter a representation of the random process in terms of a system
f linear differential equations must be developed first. This will be
hown in the following section.
ources 191 (2009) 16–21 17

3. Kalman filter formulation

A Kalman filter is an algorithm for obtaining a minimum mean-
square error point estimate of a random process. It is a method of
least squares filtering that is obtained from a state space formu-
lation. To start it is necessary to recast (2) as a system of linear
differential equations. Note that (2) is just a linear equation in the
variable L, with slope a1 and y-intercept a0. For this model let:

y(L) = a1(L − L0) + a0. (3)

Then carrying out the following steps let

x1 = y(L)
x2 = ẏ(L) = ẋ1
ẋ2 = ÿ(L) = 0
y(L0) = a0
ẏ(0) = a1

The resulting system of linear differential equations from these
operations is[

ẋ1
ẋ2

]
=

[
0 1
0 0

][
x1
x2

]
. (4)

The discrete version of the state transition matrix can be obtained
from (4) and is of the form:

�(�t) =
[

u(�t) �t
0 u(�t)

]
(5)

where u(�t) is the unit step function.
The Kalman filter equations or loop are listed in (6)–(10) and

following these the initial conditions will be developed. Following
initialization, the sequence of steps, (6)–(10) are executed in the
order shown. After the last step the process is repeated using the
quantities from the project ahead step as inputs to start the loop
again.

Start filter

(1) Compute Kalman gain:

Kk = P−
k

HT
k [HkP−

k
HT

k + Rk]
−1

(6)

(2) Update estimate with measurement zk:

x̂k = x̂−
k

+ Kk[zk − Hkx̂−
k

] (7)

(3) Compute error covariance for updated estimate:

Pk = [I − KkHk]P−
k

(8)

(4) Project ahead:

x̂−
k+1 = �kx̂k (9)

P−
k+1 = �kPk�T

k (10)

Some of the terms in (6)–(10) can be defined without too much
explanation.

zk =
[

y(Lk)
a1

]
: measurement of normalized capacity, y(Lk), and

slope, a1;[
x1k

]

xk =

x2k
: state vector at tk;

Hk =
[

1 0
0 1

]
: matrix defining the relationship between the mea-

surement and the state vector.
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discharge load was 17 A (2C) constant current to an end voltage of
1.83 V cell−1 (10.98 V). Discharge time for a new battery is approxi-
mately 1000–1100 s. At the end of each test discharge the (calendar)
date and time are recorded together with the discharge time. The
discharge time can be normalized by dividing by the reference time
8 W.L. Burgess / Journal of P

Rk is the covariance matrix of the measurement error. That is,
or each observation of the state, xk, there are two components, the

easurement, zk, and an additive error term, vk. The expression
sed here is xk = zk + vk. The covariance matrix of the error is of
he form:{

vkvT
i

}
=

{
Rk, i = k
0, i /= k

}
. (11)

he resulting matrix, Rk, is

k =
[

v2
1 0

0 v2
2

]
(12)

he assumption is made above in (11) that the measurement error
as zero mean (i.e. no fixed bias). The measurement error can now
e thought of as just a noise term. It is defined, for the purpose of
his work, as

1 = v2 = 0.01. (13)

It remains to obtain estimates of the error covariance matrix, P−
k

,
f the state variable to use for calculating the Kalman gain (6), the
rst equation in the loop. The basic approach is to use whatever
nowledge is available about the process (3) prior to entering the
alman filter loop. First, the state estimation error is defined as

−
k

= xk − x̂−
k

(14)

ere, x̂−
k

is the estimate of the state just prior to time tk. The error
ovariance can now be defined as

−
k

= E{e−
k

e−T
k

} = E{(xk − x̂−
k

)(xk − x−
k

)T }. (15)

Ignoring the noise term vk for the time being and using just zk
15) becomes

E

{[
Y−

k
− Ŷ−

k
a−

1 − â−
1

][
Y−

k
− Ŷ−

k
a−

1 − â−
1

]}

= E

{[
(Y−

k
− Ŷ−

k
)
2

(Y−
k

− Ŷ−
k

)(a−
1 − â−

1 )

(Y−
k

− Ŷ−
k

)(a−
1 − â−

1 ) (a−
1 − â−

1 )2

]}
(16)

he task now is to estimate values for each entry in (16) using prior
nowledge of the process. Consider first the entry:

{(Y−
k

− Ŷ−
k

)
2}. (17)

rior to starting the Kalman filter, three measurements of capacity
ill have been obtained. From these a linear, least squares fit to the
ata (i.e. (3)) can be calculated. To indicate this is a priori knowledge
3) can be rewritten as

ˆ −
k

= â−
1 (Lk − L0) + â−

0 (18)

here the superscript minus signs now indicate values prior to
tarting the Kalman filter (i.e. prior to the next measurement) and

ˆ−
1 , â−

0 are the estimated coefficients. Given the model above (18)
ach measurement of capacity satisfies:

−
k

= â−
1 (Lk − L0) + â−

0 + e−
k

. (19)

here e−
k

is the error between the data and the model. Fig. 2 shows
he relationship between the model (i.e. fitted line) and the data.

The quantity e−
k

is often referred to as the residual. It is consid-
red to have a mean of zero. Returning to (17), subtracting (18) from
19) yields
{(Y−
k

− Ŷ−
k

)
2} = E{e−2

k
} =

∑
ke−2

k

n − 1
. (20)

his is the variance of the residuals which can be easily obtained
rom the a priori data.
Fig. 2. Relationship between fitted line and data.

Next is the diagonal term:

E{(a−
1 − â−

1 )2}. (21)

For the purpose stated above, obtaining starting values for the
Kalman filter using prior knowledge of the process, think of â−

1 as
the true or exact value of the slope. That is, �a−

1
= E{a−

1 } = â−
1 . Using

this in (21) yields

E{(a−
1 − â−

1 )2} = E{(a−
1 − �a−

1
)2}. (22)

This is the variance of the estimate of the slope and is given by �2/Sxx

([6] Eq. 1.4.1; p. 24). This can also be calculated from the prior data.
The last quantity to be estimated is the off diagonal entries in

(16). This is the covariance between the two variables. Using the
following reasoning one might suspect the off diagonal terms are
zero. The first term inside the brackets, Y−

k
− Ŷ−

k
, is the residual. It

has a mean of zero. It has been shown that cov(Ȳ , a1) = 0 ([6]; p. 28).
For initializing the covariance matrix set the off diagonal entries to
zero.

This concludes the setup and initialization of the Kalman filter
algorithm. The implementation of the filter to estimate the remain-
ing float service life will be described next.

4. Kalman filter implementation

The previous section provided the algorithm for the Kalman fil-
ter and the means for estimating the quantities needed to start the
filter. In this section the implementation of the Kalman filter for use
in predicting the end of the float service life of the battery will be
described. The first task is to detect the start of the second period
of the float service life as described in Section 1 and shown in Fig. 1.
Until this period is detected the Kalman filter is not operating.

The state of the battery is obtained by performing a discharge
at some convenient interval. For the batteries used in this work a
discharge was performed approximately every 15 days at 50 ◦C. The
Fig. 3. Sequence of detection, initialization of Kalman filter and starting filter.
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hosen for the battery model and discharge performed. Here a time
f 1200 s was used.

Once a series of three discharge tests have been accumulated
he algorithm to detect the rapid change in slope of the capacity
s. calendar time (see Fig. 1) curve can be executed. This algorithm
alculates a least squares fit to a straight line (2) using the variables
L, ln[−ln(1 − �)]) where L is the days in operation (referenced to the
rst discharge which is arbitrarily set to 0) and � is the normalized
ischarge time. From the least squares fit calculation, the slope; a1,
-intercept; a0, and some measures of the quality of the estimate,
ariance; s2, and correlation coefficient; rxy, can be obtained. With

hese quantities, a comparison is made to threshold values of a1,
2 and rxy to determine whether the battery has reached the stage
here capacity starts to decrease rapidly. If all the above conditions

re not met, then the process will be repeated when the next test
ischarge is performed. Upon completion, the first (earliest) test

Fig. 5. Kalman filter perfor
life test data.

discharge will be removed and the latest one added to maintain
three points for the least squares fit and slope detection algorithm.
If all three conditions are satisfied the Kalman filter is started with
the next test discharge.

The error covariance matrix (15), P−
k

, and the measurement error
covariance (12), Rk, must be initialized first to obtain the Kalman
gain (6). Here

P−
k

=
[

s2 0

0
s2

Sxx

]
(23)
and

Rk =
[

0.012 0
0 0.012

]
. (24)

mance of battery #1.
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(10), predict battery capacity at some specified time in the future. To
obtain the relative error between the actual capacity and projected
or estimated capacity the projections were made to the next data
point and the succeeding one. In calendar time these projections
were approximately 90 and 180 days in the future from each data

Table 1
Relative error between measurement and filter output.

n Batt #1 n Batt #2 n Batt #3 n Batt #4

5 −0.014 5 −0.088
6 −0.042 6 6.051 6 −0.010 6 0.394
7 −0.018 7 0.542 7 0.008 7 0.045
8 0.022 8 0.108 8 0.059 8 0.029
9 −0.013 9 0.141 9 −0.006 9 −0.019
10 −0.001 10 0.015
11 −0.070 11 −0.110
Fig. 6. Performance of pr

inally, the initial value of the state vector, x̂−
k

, can be set using the
esults from the last test discharge when the three conditions on
he slope were satisfied. A graphical depiction of initializing and
tarting the Kalman filter is contained in Fig. 3.

In this implementation of the Kalman filter, once the algorithm
s started, the threshold time, L0, is subtracted from the calendar
ime in all subsequent calculations. Time then is in hours since the
egradation of capacity was detected.

The Kalman filter loop, as described in (6)–(10), can now be
pplied to the data from the most recent test discharge. The two
ain applications of this filter are to obtain a filtered estimate of

he battery capacity after each test discharge is performed and to
roject ahead to determine the remaining time until the battery
eaches end of life. The filtered capacity or estimate of capacity is
rom (7). The error covariance matrix (8) can be used to judge the
uality of the estimate. The project ahead step in (9) and (10) can
e used to estimate the remaining life of the battery.

Refer first to (5), where the elements of the state transition
atrix are shown. The �t entry is the time between the current

r most recently performed test discharge and the next scheduled
ne. This step, (9) and (10), could be executed when the next test
ischarge is performed. To obtain an estimate of the life remaining
hose a suitable time interval, �t, of interest and compute an esti-
ate of the state vector using (9) and the error covariance (10). In

his work multiples of the time interval to the next test discharge
ere used. The time interval of the test discharges was approxi-
ately 90 days. Projections were made using intervals of 90 and

80 days.

. Results

Float service life test data from four 12 V, 9 Ah VRLA batteries
as used to test the performance of the filter for this application.

he batteries were tested at 50 ◦C. Fig. 4 contains plots of relative
apacity vs. days on test for the four batteries. The dot represents

he float service life specification for this battery (120 days at 50 ◦C
o 50% of initial capacity).

The first measure of performance of the filter is how well it tracks
he battery capacity. Fig. 5 provides a visual indication of the per-
ormance of the filter. Here, the measurement data together with
ahead step of battery #1.

the filter output for battery #1 is shown. The horizontal axis, rather
than being in units of time on float, is shown as discrete test dis-
charges or steps. This will be used for all the graphs depicting filter
performance. Note the agreement between the measured capacity
and the filtered capacity for many of the steps is quite good. This
shows in a qualitative way not only the performance of the filter
but also the adequacy of the model chosen. The actual measure of
performance used in this work is the relative error between the
actual capacity and filtered capacity at each test discharge. Table 1
shows filter performance, in terms of this relative error, for each
of the four batteries. The rms error is shown at the bottom of the
table with and without the first data point. The reason for omitting
the first data point is with some batteries, after detecting the slope
change and starting the Kalman filter, the output has not stabilized.
This can be seen from the results with battery #2 in Table 1. It is the
worst performing battery of the four.

The second measure of performance of the filter is how well it
can project the battery capacity at some point in the future. For this
application this is the more important of the two performance mea-
sures. In particular, the interest here is how well does Step 4, (9) and
12 −0.046 12 −0.130
13 −0.171

rms error 0.035 2.15 0.048 0.20
1st data point

removed
0.037 0.23 0.030 0.033



W.L. Burgess / Journal of Power S

Table 2
Relative error in projections.

n Batt #1 n Batt #2 n Batt #3 n Batt #4

One-step ahead
5 −1.687 6 0.562 5 −0.368 6 0.119
6 −0.0970 7 0.115 6 0.0410 7 0.0774
7 0.0654 8 0.155 7 0.171 8 −0.0443
8 −0.0294 9 0.0181 8 −0.0139
9 −0.00275 10 −0.134
10 −0.136 11 −0.165
11 −0.0813 12 −0.222

Two-step ahead
5 −1.123 6 0.131 5 −0.258 6 0.145
6 −0.0026 7 0.160 6 0.199 7 0.0103
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[
[
[
[

7 0.0159 8 0.0319 7 0.112
8 −0.0197 9 −0.132
9 −0.138 10 −0.190
10 −0.151 11 −0.259

oint. The projections are shown graphically in Fig. 5. At each step
he projection is made for the capacity at the next measurement.
or comparison between the projection and measured capacity the
olid rectangle in Fig. 5 is shifted right, to the next time step. The
ovariance at the projected step is calculated also. Both of these
re used as inputs to the Kalman filter when it loops back to the
eginning of the algorithm. The covariance from the projection is
sed in Step 1, (6) and the projected state is used in Step 2, (7).
ote here the means by which the state vector is updated. With
ach new measurement the difference between the measured state
nd the projected state is taken, multiplied by the Kalman gain and
dded to the previous state. The Kalman gain, (6), is a function of
he projected error covariance from the previous step.

The graph in Fig. 6 shows the relative error between the projec-
ion and the measured capacity for one and two steps ahead (90 and
80 days, respectively). The error variance is included also. Note the
arge error/large error variance for the first projection after the bat-
ery capacity degradation is detected. The errors tend to stabilize
n succeeding measurements. Of significance is the relative error
n the projections for both one and two steps ahead is under 0.20
20%) through the end of life, typically near steps 8 and 9. It can be
een in Table 2 that this limit holds for all four batteries, after the
rst measurement, and both one and two-step projections.

. Conclusions

The method developed here to estimate the remaining life of

VRLA battery takes advantage of the two distinct phases of the
oat service life. In the first phase, degradation of battery capacity

s small, and hence no projections are made. Once the onset of the
econd phase of the float service life is detected, a Kalman filter is
mployed to track the degradation of capacity. The project ahead

[
[

[

ources 191 (2009) 16–21 21

step in the filter algorithm is used to predict battery capacity at
specific times in the future.

Using float service life test data from four batteries, it was
demonstrated that the relative error in the predicted capacity was
20% or less for projection intervals of 90 and 180 days. The rms error
in the filter output was less than 5% for three of the four batteries.

Initial conditions for the Kalman filter are obtained from mea-
surements during the detection process. As a result the only
knowledge required of the battery in use is a reference capacity
used to calculate relative capacity.

Much of the published work on the application of a Kalman filter
to estimate the state or condition of a battery is related to SOC and
to a lesser degree state-of-health (SOH). To this writer’s knowledge
a Kalman filter has not been applied to the task of estimating the
remaining float service life of a VRLA battery. One of the most recent
methods on estimating the remaining life of a VRLA battery, which
is not based on a Kalman filter, is provided by Pascoe in [7]. Here,
battery life is estimated initially from calendar time on float plus
operating temperature. Other factors such as float voltage and state-
of-health indicators are incorporated, including occasional capacity
checks, to calibrate the governing equations proposed to estimate
the remaining life.

The method described in this paper provides similar results and
obtains equivalent accuracy for the projections of end of life. Both
methods require shallow discharges of the battery to obtain capac-
ity estimates used as input to the algorithms. The main benefits of
the approach described in this work are the Kalman filter can be
initialized from measurements made during normal operation and
an expected discharge time is the only information needed on the
battery in use. It is expected then that the Kalman filter implemen-
tation described here will be more robust and require almost no
characterization when applied to a wide range of battery models.
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